Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1229-3431(Print)
ISSN : 2287-3341(Online)
Journal of the Korean Society of Marine Environment and Safety Vol.29 No.2 pp.230-237
DOI : https://doi.org/10.7837/kosomes.2023.29.2.230

Structural Analysis of the Governing Variables Affecting the Structural Strength Evaluation of the Lashing Bridges in Container Vessels

Myung-Su Yi*, Joo-Shin Park**
*Professor, Department of Naval Architecture and Ocean Engineering, Chosun University, Gwangju 61452, Korea
**Part leader, Structural Mechanics Research, Ship and Offshore Research Institutes, Samsung heavy industries, Geoje 53261, Korea

* First Author : true413@chosun.ac.kr, 062-230-7182


Corresponding Author : scv7076@nate.com, 055-630-9613
February 20, 2023 April 3, 2023 April 27, 2023

Abstract


Due to the COVID-19 pandemic and climate change, shortages of essential commodities and resources continue to occur globally. To address this problem, trade volume demand suddenly increased, driving up the freight rate of container ships sharply. The size of container vessels progressively increased from 1,500 TEU (twenty-foot equivalent unit) in the 1960s to 24,400 TEU in 2021. As the improvement of container loading capacity is closely related to the enlargement of the lashing bridge structure, it is necessary to design a structure effective for good container securing and safe under the various external loads that occur during voyage. Major classification societies have recently issued structural-analysis-based guidelines to evaluate the structural safety of lashing bridges, but their acceptance criteria and evaluation methods are different, causing confusion among engineers during design. In this study, the strength change characteristics are summarized by variations in the main variables (modeling range, opening consideration, mesh size) likely to affect the results. Based on this result, the authors propose a reasonable structural-analysis-based evaluation that is expected to serve as a reference in the next revision of classification standards.



컨테이너선 라싱 브릿지 구조 강도 평가에 영향을 미치는 주요 변수의 구조해석

이명수*, 박주신**
*조선대학교 선박해양공학과 교수
**삼성중공업 조선해양연구소 구조연구 파트장

초록


코로나 19 팬데믹 및 기후 변화 등으로 전 세계적으로 필수적인 생필품과 자원의 품귀 이슈가 지속해서 발생하고 있다. 이러한 현상을 극복하고자 교역량의 수요가 갑자기 증가하였으며 이 결과 컨테이너선의 운임이 대폭 상승하였다. 컨테이너선의 크기 변화는 1960 년대 1,500TEU(twenty-foot equivalent unit)를 시작으로 2021년에는 24,400TEU로 대형화가 진행되고 있다. 컨테이너 적재 능력의 향상은 라싱브 릿지 구조의 대형화와 긴밀하게 연관되어 있고, 안전한 컨테이너 고박 및 항해 시 발생하는 다양한 외력 하중에 안전한 구조설계를 해야 한다. 현재 주요 선급에서는 라싱브릿지 구조 안전성을 평가할 수 있는 구조해석 기반의 지침서를 배포하고 있으나, 허용기준 및 평가 방 법이 달라서 설계 시 엔지니어들에게 혼선을 주고 있다. 본 연구에서는 결과에 영향을 줄 가능성이 큰 주요 변수들(모델링 범위, 오프닝 고 려 여부, 메쉬 크기) 변화에 따른 강도 변화 특성을 정리하였다. 이 결과를 바탕으로 저자들은 합리적인 구조해석 기반 평가에 대한 검토사 항을 제안하였고, 추후 선급 기준 개정 시 참고가 될 수 있을 것으로 기대한다.



    1. 서 론

    최근 컨테이너선은 선사들의 이해관계 변화에 따라서 초 대형화 선단 구축이 활발하게 진행되고 있으며, 2021년도에 24,400TEU가 상용화되었다. 컨테이너선의 화물 적재 능력 향상에 따라 해치 커버 상단부에 적재되는 컨테이너의 수도 많이 증가하였다. 갑판(Deck) 상단부에 적재된 컨테이너의 안전한 위치 고정을 위하여 라싱 브릿지(Lashing bridge)라는 대형 철 의장 구조물을 길이 방향으로 배치하고 있다. 이 구 조물은 작업자가 이동하여 특수 컨테이너(냉장/냉동 컨테이 너)의 관리가 가능하게 해주는 장점이 있다. 라싱 브릿지가 대형 구조화가 되면서 선급마다 설계 및 구조 안전성을 평 가하는 고유의 절차서를 제안하고 있다. 컨테이너는 적재된 상태에서 환경 하중(파도, 바람)의 영향을 고려한 고박 하중 을 기본 하중으로 적용하며, 프로젝트의 초기 단계에서는 선급에서 제공하는 보수적인 값을 적용하여 기본설계를 진 행한다. 모델링은 실제 부재의 형상을 모두 반영할 수 있도 록 요소를 조밀하게 구성하고, 1차원 빔 요소와 2차원 쉘 요 소를 조합하도록 권고하고 있다. 구조해석 모델링을 기반으 로 선형해석을 수행하고, 최대조합 응력이 허용응력 이하가 될 때까지 반복 작업을 수행한다. 본 연구와 관련된 기존의 선행연구를 아래와 같이 요약하였다.

    Shin(2003)은 다양한 조건을 고려한 컨테이너 배치 설계를 쉽게 하려고, 컨테이너 고박 시스템을 개발하였고, 등식 제 한조건을 처리할 수 있는 최적화 알고리즘을 고안하였다. 개 발된 시스템의 계산 결과를 검증하기 위하여 GL(Germanisher Lloyd) 프로그램과 비교하였으며, 유사한 값을 확인하였다. 기존에 시행착오 방법에 의존하던 컨테이너 배치 설계를 최 적화 알고리즘을 도입한 프로그램 활용으로 의사 결정의 시 간과 정확도가 높아졌다는 데 의의가 있다.

    Yun(2008)은 현재의 선급에서 사용하고 있는 선급 하중을 적용하고 발생하는 응력을 허용응력과 비교하였다. 또한, 라 싱 브릿지에 대한 최종강도 해석을 수행하고 이를 근거로 안전 여유치를 산정하였다. 연구 모델은 1,800TEU 컨테이너 선이고, 상용해석 프로그램인 ABAQUS를 이용하였다. 허용 하중은 계산된 최종강도 값보다 평균 80 %의 값으로, 약 25 % 의 강도 여유가 있으므로 추가적인 구조 중량 절감이 가능 하다는 점을 언급하였다.

    Souadji(2012)는 3,100TEU 소형 컨테이너선 모델의 주요 치 수 선정부터 3차원 모델링 확정까지의 전 설계 과정에 대한 절차서를 제안하였다. 구조 부재의 위상 최적화 기반으로 구조 모델링을 구축하고 GL 선급의 규칙과의 위배성을 확 인한 후 최종적인 설계 치수를 확정하였다. 주요 구조 부재 의 구조 강도 검토는 Poseidon 프로그램을 이용하고, 모델이 확정되면 화물창 단위로 해석 영역을 확장해 가는 방식이 다. 구조해석 단계가 완료되면, TRIBON 프로그램과 연동하 여 2차원 및 3차원 모델을 출력하여 여러 가지 프로그램을 사용하여 복잡한 과정을 거쳤던 기존의 프로세스를 단순화 하였다.

    Yulianto et al.(2018)은 유한요소법을 이용하여 턴버클의 각 도 변화(횡 경사 0도 ~ 40도)에 따라서 최소 인장력에 도달하 는 회전 한계와 구조 응력 수준을 평가하였다. 해석에 사용 된 모델은 턴버클과 라싱바(Lashing bar)를 포함하였고, 요소 의 크기에 따른 수렴도 평가를 통하여 최대 크기는 15 mm로 결정하였다. 턴버클의 크기를 소형, 중형, 대형으로 구분하 였고, 20피트 컨테이너의 고박에 가장 적합한 방식은 중형 턴버클을 이용한 조건이었다.

    Yuan et al.(2018)은 21,000TEU 컨테이너선의 라싱 브릿지 구조 강도 및 진동해석을 상용 유한요소해석 프로그램인 ANSYS를 활용하여 수치 해석적 연구를 수행하였다. 구조 강도평가를 통하여 스크리닝을 수행하여 취약 부위를 찾아 내고, 고유진동수 결과와 비교하여 두 가지가 중첩되는 곳 을 먼저 표본 뽑기를 하였다. 이러한 해석 결과는 빨리 구조 물의 개선을 포함한 최적화 과정을 통하여 최종적인 라싱 브릿지 설계안을 확정한다.

    Li and Wang(2018)은 라싱 브릿지 구조의 경량화와 진동 감쇠 설계를 하기 위하여 지능형 설계 및 최적화 개념을 적 용하였다. 데이터를 구축하는 과정에서 지식에 대한 습득과 관리하는데 많은 시간을 소모하는 단점이 있으나, AI 알고 리즘을 이용하여 생성된 지식을 체계적으로 식별하는 기술 의 개발이 필요함을 언급하였다. 다양한 모델링 정보에 대 한 접근성을 높이기 위하여 CAD/CAE 프로그램에 제한도가 낮아서 빠른 응답과 유연성을 가진 장점을 강조하였다. 제 안된 방법과 도면 기반 모델링 후 해석 값과의 정확도는 유 사하였으며, 제안된 방법이 빨리 수학적 최적 모델을 제공 함을 확인하였다.

    Li et al.(2020)은 초대형 컨테이너선 라싱 브릿지 구조의 동적 거동을 실험적인 방법을 통하여 구현하였다. Froude 축 소 법칙을 이용하여 1/10 크기로 실험에 사용되는 시편을 제 작하였고, 컨테이너와 고박장치 간 연결 상태를 적절하게 표현하였다. 진동 실험결과와 수치해석결과는 잘 일치하고 있으며, 축적 모델이 실제 라싱 브릿지 정적 및 진동 거동을 잘 예측할 수 있음을 보여준다. 진동 응답 결과를 통하여 높 은 진동 응답을 보여준 기둥 지지대와 브래킷 형상을 최적 화해야 한다고 제안하였다.

    최신의 선행연구에서는 대형화되는 라싱 브릿지 구조에 대한 구조해석 방법론과 설계와 해석을 통합화하는 시스템 개발에 중점을 두고 있었다. 선급에서 제안하고 있는 유한 요소해석 모델링을 기반으로 구조 안전성 평가를 하는 지침 서마다 다른 점에 의한 설계 변경이 발생하는 사항에 관해 서는 선행연구에서는 언급하지 않고 있으며, 이러한 사항이 이 논문의 차별성이라고 할 수 있다. 주요 결과로 도출된 내 용은 대형 컨테이너선의 라싱 브릿지 구조 안전성 평가 분 야에 관련한 기초적인 자료로 유용하게 활용될 것으로 판단 된다.

    2. 라싱 브릿지 엔지니어링

    2.1 주요 제원

    아래 Fig. 1은 국내 대형조선사에서 건조한 에버그린 (EVERGREEN) 해운사의 세계 최대 컨테이너선인 24,000TEU 를 나타내고 있다. 1TEU는 20피트 컨테이너 1개를 의미한다. 연구에서 고려한 해당 선박의 주요 제원은 Table 1과 같으 며, 해치코밍(Hatch coaming)위에 적재된 컨테이너의 고박을 위해서 사용하는 라싱 브릿지 구조의 형상은 Fig. 2와 같다.

    라싱 브릿지는 40피트 컨테이너가 적재되는 사이만큼의 공간을 가지면서 길이 방향으로 배치가 되며, 높이 방향으 로는 해치코밍 상단 그리고 폭 방향은 전체 폭에 해당하는 범위에 걸쳐서 위치한다. 컨테이너가 대형화가 될수록 해치 커버의 수직 높이가 증가하고 있으며, 최외곽, 측면 컨테이 너를 효과적으로 고박하기 위해서 Fig. 3과 같이 측면부가 1 단 더 높게 구성한 예도 있다.

    2.2 해석 재원 및 모델링

    연구에서는 유한요소법(Finite element method)을 근간으로 하여 공학용 해석이 가능한 상용프로그램(MSC Patran, Nastran 2012)을 이용하였다. 해석에 사용된 유한요소 수는 라싱 브 릿지가 163,666개, 선체 모델은 48,577개로 구성하였다. 전체 적인 처짐 형상 및 응력 결과 판단 시 충분하며, 주요 구조 강 도 부재는 2차원 쉘 요소를 적용하였고, 기타 보강재는 1차원 빔 요소를 사용하였다. 모델링 범위에 따른 구조 안전성 변 화를 확인하기 위하여 선체 모델을 포함한 경우 Fig. 3-(a)와 라싱 브릿지만 있는 모델을 Fig. 3-(b)에 나타내고 있다.

    영국 선급(Lloyd’s register)에서 제안하고 있는 라싱 브릿지 구조 강도평가를 위한 지침서에서는 Fig. 4와 같이 부재가 만나는 연결부에서는 두께 크기만큼 요소를 분할 하도록 권 고하고 있다. 일반적인 선체 구조 부재는 최소 요소의 분할 크기가 50 mm지만, 라싱 브릿지는 구조 부재와 비교하면 상 대적으로 작으므로 형상을 구현하면서 요소 분할을 하면 요 소의 크기는 더 작아질 수밖에 없다. 선형해석법에서는 요 소의 크기가 작아질수록 발생하는 최대 응력은 급격하게 커 지기 때문에 요소의 크기에 관한 결정은 결과에 미치는 영 향이 크다. 라싱 브릿지 구조를 구성하는 재료의 물성값은 고장력강(AH36)이며 상세 제원은 Table 2와 같다.

    2.3 경계조건 및 하중 조건

    해석을 수행하기 위한 경계조건은 Fig. 5와 같으며, 선체 모델의 포함 여부에 따라서 두 가지로 분류된다. 선체를 포 함한 경우 길이 방향은 연속거동 대칭 조건을, 하부는 고정 경계조건을 적용하였다. 라싱 브릿지만 있는 경우는 모델의 끝단 부에 고정조건을 부여하였다.

    해석에서 사용된 하중은 선급에서 제시하고 있는 가장 보 수적인 값(75 % of maximum lashing load)을 컨테이너선에 고 려된 실제 장치 배열을 반영한 Fig. 6과 같다. 1단 컨테이너 고박의 경우는 최대 고박 하중의 50 %를 적용하는 지침서도 있지만, 라싱 브릿지 구조 안전성 관점에서는 최댓값을 같 게 적용하는 접근이 합리적이다.

    2.4 평가 기준

    영국 선급 지침서에서는 요소의 분할 크기 기준 세 가지 에 따라서 다른 허용응력 기준을 제시하고 있으며, Table 3, 4, 5에 표기하였다. 표준 요소 분할 크기인 150 mm를 적용할 때는 공칭응력, 전단응력 그리고 본 미세스(Von-mises) 조합 응력으로 분류하여 적용하고, 분할 크기가 조밀한 50 mm인 경우에는 평균응력과 최대 응력으로 나누어 평가하도록 권 고하고 있다. 라싱 브릿지 내에 있는 개구부와 국부 보강용 브래킷의 경우는 모델링 최외곽에 1차원 선 요소인 라드 (ROD)를 적용하고 인장과 압축응력을 확인하여 평가한다.

    3. 유한요소해석 결과

    3.1 모델링 범위 효과

    라싱 브릿지와 선체가 만나는 연결부에서의 구조 안전성 평가를 위하여 노르웨이 선급(DNV)은 선체 모델을 포함하도 록 하고 있다. Fig. 3에서 나타낸 바와 같이 선체를 포함 여부 에 따른 2가지 모델에 하중 조건을 입력하여, 그 결과를 Fig. 7에 비교하였다. 두 가지 모델의 최대 응력은 최상층 플랫폼 하부에서 발생하였으며, 선체를 포함한 모델에서 4 % 큰 값을 보였으나, 허용응력인 211.5 MPa보다 충분히 작은 수치이다. 라싱 브릿지 구조의 주요 하중은 라싱 바가 위치한 국부적인 집중하중에 영향을 크게 받기 때문에, 선체 모델의 포함 효 과가 미비하다는 것을 이 결과를 통해서 확인할 수 있다.

    3.2 개구부 모델링 효과

    라싱 브릿지 구조는 구조 응력이 작은 부위는 중량 절감 및 작업자가 층별로 이동을 위하여 개구부 시공을 한다. Fig. 8은 해석에서 사용한 모델에 대해서 나타내고 있다.

    영국 선급(Lloyd’s register)에서 제안하고 있는 개구부를 반 영한 모델링의 최대 응력은 293.3 MPa이고, 개구부가 없는 경 우는 146.5 MPa로서 약 2배의 결과 차이가 Fig. 9에서 확인할 수 있다. 선급 지침서에 따라서 응력 결과 차이가 크게 나타 나기 때문에, 특정 위치에서의 보강이 추가로 고려되어야 한다.

    3.3 요소 분할 크기 효과

    2차원 쉘 요소를 사용하고, 요소의 크기에 따른 응력 변화 를 확인하기 위한 세 가지 모델의 절점과 요소의 구성 정보 를 Table 6과 같이 구성하였다.

    요소 크기 3종류에 따라서 발생하는 최대 응력의 발생 위 치는 모두 같은 위치이며, 요소의 크기가 작아질수록 실제 구조 부재의 형상을 잘 표현해주고 있다. 응력이 크게 발생 할 수 있는 플랫폼과 수직 기둥재의 연결부위에는 응력집중 을 방지하기 위하여 브래킷이 위치하며 교차점에서 응력 증 가율이 크게 보이며, Fig. 10과 같다. 이 결과로부터 요소의 크기에 대한 최대 응력 변화는 아주 크다는 것을 확인할 수 있다.

    Fig. 11에서와 같이, 요소 크기가 100 mm에서 50 mm로 작 아지면, 응력은 15 %가 증가하며, 150 mm에서 100 mm로 변 화한 경우에는 8 %가 증가한다. 즉, 요소 크기 변화는 작아 지면 질수록 큰 편차를 나타내는 경향을 나타내기 때문에, 해석 모델링에 의한 구조 응력 평가 시 공통화된 요소 크기 에 관한 결정이 무엇보다도 중요하다.

    4. 결론 및 고찰

    본 논문에서는 최근 대형 컨테이너선의 등장과 함께 라싱 브릿지 구조의 합리적인 구조 안전성 평가 해석과 관련된 주요 이슈에 대해서 논의하였다. 현재 주요 선급에서는 라 싱 브릿지 구조 안전성을 평가할 수 있는 구조해석 기반의 지침서를 배포하고 있으나, 허용기준 및 평가 방법이 달라 서 설계 시 엔지니어들에게 혼선을 주고 있다. 본 연구에서 는 결과에 영향을 줄 가능성이 큰 주요 변수들(모델링 범위, 오프닝 고려 여부, 메쉬 크기) 변화에 따른 강도 변화 특성 을 정리하였다. 이 결과를 바탕으로 저자들은 합리적인 구 조해석 기반 평가에 대한 검토사항을 제안하였고, 추후 선 급 기준 개정 시 참고가 될 수 있을 것으로 기대한다. 연구 를 통하여 도출된 결론은 다음과 같다.

    • [1] 구조 모델링 시 2차원 쉘 요소의 분할 크기에 따라서 응 력 변화는 크게 발생하며, 선형적인 관계가 아니다. 따라서, 라싱 브릿지 구조 안전성 평가 시 사용할 수 있는 표준화된 기준의 제정이 필요하다.

    • [2] 선체 모델을 포함한 경우, 최대 응력은 4 % 크게 발생하 지만, 여전히 허용응력보다 충분히 작은 값이다. 보수적인 평가 관점에서는 라싱 브릿지 자체만 모델에 고려하여 평가 하더라도 유효하다.

    • [3] 라싱 브릿지 내 개구부를 고려할 경우, 같은 요소 크기를 유지하더라도 약 2배 응력을 크게 평가한다. 개구부에 대한 고려 시 응력집중 계수에 대한 별도의 고민이 필요한 부분 이다.

    • [4] 제안된 구조해석 방법의 신뢰성을 높이기 위해서는 선행 연구 결과 및 구조 강도 실험을 통한 검증이 필수적이다. 추 후 구조 강도 실험을 계획하고 있으며, 비교 결과를 분석하 여 공유하고자 한다.

    향후 연구과제로서는 라싱 브릿지 구조 강도 해석을 위한 표준화 된 요소 크기에 대한 비선형 거동 관점에서의 검토 가 필요하다. 이 결과를 바탕으로 하여, 선형해석 시 응력의 과도한 증가 현상에 대한 보정 계수 혹은 기법의 개발이 필 요하다.

    Figure

    KOSOMES-29-2-230_F1.gif

    Ultra large container vessel of 24,000 TEU by EVERGREEN (https://www.container-news.com/).

    KOSOMES-29-2-230_F2.gif

    A typical lashing bridge in container vessel (https://www.marinelink.com/).

    KOSOMES-29-2-230_F3.gif

    Analysis modeling.

    KOSOMES-29-2-230_F4.gif

    Recommendation of fine mesh condition by LR (2016).

    KOSOMES-29-2-230_F5.gif

    Boundary condition.

    KOSOMES-29-2-230_F6.gif

    Load condition induced by container lashing.

    KOSOMES-29-2-230_F7.gif

    Von-mises stress contour according to modeling area.

    KOSOMES-29-2-230_F8.gif

    Analysis model with/without opening on the platform.

    KOSOMES-29-2-230_F9.gif

    Von-mises stress with/without opening on the platform.

    KOSOMES-29-2-230_F10.gif

    Von-mises stress according to mesh size.

    KOSOMES-29-2-230_F11.gif

    A comparison of the Von-mises stress distribution according to mesh size.

    Table

    Principal dimensions of 24,000 TEU container vessel

    Material properties of the lashing bridge

    Allowable stress criteria under standard mesh (150 mm)

    Allowable stress criteria under fine mesh (50 mm)

    Allowable stress criteria under very fine mesh (thickness)

    Summary of the analysis cases according to mesh size

    Reference

    1. Li, C. and D. Wang (2018), Multi-objective optimisation of a container ship lashing bridge using knowledge-based engineering, Ships and Offshore Structures, pp. 1-18.
    2. Li, C. , D. Wang and J. Liu (2020), Numerical analysis and experimental study on the scaled model of a container ship lashing bridge, Ocean Engineering, Vol. 201, pp. 1-27.
    3. LR (2016), Ship Right-Design and Construction, Procedure for the Assessment of Container Ship Lashing Bridge Structures, Sec. 1 and 2, pp. 1-12.
    4. MSC Software (2012), Patran 2012 User’s Guide, Chapter 6-, Material modeling, pp. 125-136.
    5. Shin, S. H. (2003), A study on container securing system for optimum arrangement, Journal of Korean Navigation and Port Research, Vol. 27, No. 4, pp. 397-402.
    6. Souadji, W. (2012), Structural design of a container ship approximately 3,100TEU according to the concept of general ship design B-178, Thesis of Master Degree of the Liege University, pp. 3-124.
    7. Yulianto, T. , S. H. Sujiatanti, R. C. Ariesta and M. R. Aufar (2018), Strength analysis of a container lashing on the container ship by using finite element method, Proceedings of the 6th international seminar on ocean and coastal engineering, pp. 101-105.
    8. Yuan, B. , J. Zeng, R. Zhou, Y. Zhan, S. Mai and J. Zhang (2018), Structural analysis and optimization of lashing bridge of 21,000TEU ultra large container ship, The 28th International Ocean and Polar Engineering Conference, pp. 75-83.
    9. Yun, J. H. (2008), Ultimate strength assessment of lashing bridge for container vessels, Thesis of Master Degree of the Ulsan University, pp. 1-75.