Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1229-3431(Print)
ISSN : 2287-3341(Online)
Journal of the Korean Society of Marine Environment and Safety Vol.21 No.4 pp.397-402
DOI : https://doi.org/10.7837/kosomes.2015.21.4.397

A Study on the Observation Days of Maritime Traffic Investigation

Sang-Lok Yo*o,Seong-Book Park**,Young-Soo Park***,Jae-Yong Jeong****†
*,**Graduate school of Mokpo National Maritime University, Mokpo 58628, Korea
***Korea Maritime and Ocean University, Busan 49112, Korea
****Mokpo National Maritime University, Mokpo 58628, Korea
Corresponding Author :jyjong@mmu.ac.kr, 061-240-7175
June 24, 2015 July 27, 2015 August 27, 2015

Abstract

This study is to compare variation indexes by monthly, weekly and hourly using AIS data, which was collected for 365 days from January 1st to December 31st, 2013 at Mokpo Port and then, computed the maximum standard error by observation days. The comparison of monthly variation indexes showed that the monthly variation indexes for September and February were 1.11 and 0.84, respectively, in turn revealing that the maritime traffic in September was about 32.1 % larger than February. Also, the daily variation indexes for Tuesday and Sunday were 1.05 and 0.92, respectively, in turn revealing that the maritime traffic in Tuesday was about 14.1 % larger than Sunday. When the maritime traffic investigation is executed for at least 1 week in consideration of the daily variation index, it is possible to reduce the maximum standard error rate to be within 21 %. Therefore, if the maritime traffic investigation is made in the month and week with low maritime traffic, each variation index should be applied to reflect the actual maritime traffic.


해상교통조사 관측일수에 관한 연구

유상록*,박성북**,박영수***,정재용****†
*,**목포해양대학교 대학원
***한국해양대학교
****목포해양대학교

초록

본 연구는 관측일수에 따른 교통량의 신뢰성을 검증하고자 한다. 목포항의 1년간 선박자동식별장치(AIS) 자료를 사용하여 월별, 요일별, 시간별 변화지수를 비교한 후, 각 관측일수에 따른 최대표준오차를 산출하였다. 월별변화지수를 비교한 결과 9월달 1.11, 2월달 0.84로 나타나 9월달이 2월달 교통량 보다 약 32.1 % 많은 것으로 나타났다. 요일변화지수는 화요일 1.05, 일요일 0.92로 나타나 화요일이 일 요일 교통량보다 약 14.1 % 많았다. 해상교통조사는 요일변화지수를 고려하여 최소 1주일 이상 실시하면 최대표준오차를 21 % 이내로 산 출할 수 있다. 따라서 해상교통조사 관측시기에 따라 각 변화지수를 적용하여 교통량의 흐름을 반영한 연구가 뒷받침 되어야 하겠다.


    Ministry of Oceans and Fisheries

    1.Introduction

    The maritime traffic investigation could be utilized as data for the maritime traffic congestion and flow evaluation, which is to evaluate whether a fairway could accommodate the maritime traffic volume, as well as setting of speed limits and improvement of fairways.

    The previous studies on maritime traffic investigation include a study made on a 3-day maritime traffic investigation (Im et al., 2007; Kim et al., 2011; Lee et al., 2012) as well as studies on a 7-day maritime traffic investigation(Kim et al., 2006) and a 10-day maritime traffic investigation(Park et al., 2006). However, all of them have failed to suggest an error in the estimated maritime traffic upon the number of days investigating the maritime traffic. Also, they also did not suggest variation indexes including a month and a week and a hour of the maritime traffic investigation. In Japan, studies on the maritime traffic investigation have received a lot of interest(Kinzo and Kiyoshi, 1974), but there is no study on the maritime traffic investigation of Korea.

    Therefore, this study aims to suggest variation indexes of the monthly and weekly maritime traffic, and validate the computation of the number of days of observation.

    2.Method of Study

    2.1.Area of Study

    This study was made with AIS(Automatic Identification System) data, which was collected for 365 days from January 1st to December 31st, 2013 at Mokpo Port and the analysis object region was Mokpogu where vessels navigating Mokpo Port pass through, as shown in the Fig. 1.

    2.2.Procedure of Study

    Fig. 2 shows the study procedure, which is to compare the maritime traffic by maritime traffic investigation period such as a month, a week and a hour and then, apply it with the variation index and suggest the maximum standard error by observation days.

    3.Maritime Traffic Analysis

    3.1.Daily maritime traffic

    Fig. 3 shows the daily maritime traffic. Table 1, revealing the statistics data for 1 year, shows that 20,833 vessels navigated in one year and 76.8 vessels navigated in one day on average.

    3.2.Monthly maritime traffic

    Table 2, showing the investigation of vessels navigating Mokpogu by month, reveals that the average daily vessel traffic was the highest, of 84.9 vessels, in September and smallest, of 64.5 vessels, in February. Fig. 4 shows the monthly variation index (The monthly average daily maritime traffic for each month ÷ the annual average daily maritime traffic), which was shown to be 1.11 and 0.84 for September and February, respectively so the maritime traffic in September was about 32.1 % higher than the maritime traffic in February.

    3.3.Weekly maritime traffic

    Table 3 shows the maritime traffic by week. The average weekly maritime traffic by week reveals that it was highest, of 80.7 vessels, in Tuesday and smallest, of 70.8 vessels, in Sunday. Fig. 5 shows the weekly variation index (The average weekly maritime traffic by day ÷ the annual average daily maritime traffic) revealing that the daily variation indexes of Tuesday and Sunday were 1.05 and 0.92, respectively and the maritime traffic in Tuesday is about 14.1 % higher than of Sunday.

    3.4.Hourly maritime traffic

    Table 4 shows the maritime traffic by hour. Fig. 6 shows the hourly variation index (The average daily maritime traffic by hour ÷ the annual average daily maritime traffic) revealing that the maritime traffic from 09 to 10 was 1.88 which is about 382.1 % higher than 0.39 for the maritime traffic from 03 to 04. Also, from 20 to 03, the number of inbound vessels was found to be relatively higher than of outgoing vessels and from 03 to 09, the number of outgoing vessels was relatively larger than of incoming vessels.

    4.Reliability of Observation Days

    4.1.Relationship between the Observation Days and Coefficient of Variation

    When the coefficient of variation(CV) of the sample mean by the observation days is applied, it could be expressed as the equation (1)(Kinzo and Kiyoshi, 1974).

    CV = σ x ¯ n 0.5
    (1)

    Since the standard deviation(σ) of the maritime traffic in Mokpogu were 15.9 vessels, and the sample mean (x) of the maritime traffic in Mokpogu was similar with the population mean (μ) of 76.8 vessels, it could be calculated as σ/ σ / x ¯ =0.207 and expressed as the analytical equation (2).

    CV = 0.207 n 0.5
    (2)

    On the other hand, from the population, it is possible to calculate the sample mean x ¯ and standard deviation σ x ¯ for sample groups in the number of i={number of days in one year-(n-1)}, which was calculated by moving the number of populations by each observation days. The regression equation for CV for each of 50 sample groups could be computed as in the Fig. 7 and then, expressed as the equation (3).

    CV mokpo = 0.2033. n 0.3145
    (3)

    4.2.Estimation of Annual Average Daily maritime traffic

    The annual average daily maritime traffic, in general, is estimated with continuous observation for days, as the equation (4).

    1 k CV x ¯ < μ ¯ < 1 + k CV x ¯
    (4)

    Where k : Reliability Coefficient

    µ : Estimated Annual Average Daily maritime traffic

    x : Average maritime traffic, estimated with the observation made in the number of days.

    For instance, during the 7-day maritime traffic investigation at Mokpogu, when the annual average maritime traffic was calculated at the 95 % confidence level (k=1.96), as the equation (5).

    CV mokpo = 0.2033 7 0.3145 ≒0.11 0.7839 x ¯ < μ ¯ < 1.2161 x ¯
    (5)

    Table 5 shows the maximum standard error in the estimation of annual average daily maritime traffic by observation days. For instance, when it is estimated at the 95 % confidence level, the 3-day maritime traffic investigation and 7-day maritime traffic investigation could have 28.2 % and 21.6 % of the maximum standard error, respectively.

    4.3.Comparison with Previous Studies

    Table 6 shows the comparison of the maximum standard errors between the previous study(Kinzo and Kiyoshi, 1974) on the maritime traffic at the Akashi Strait for 1 year and this study, and it reveals that a result of this study is similar with of the aforementioned study. When the observation days was 14, the maximum standard errors were found to be 17.6 and 17.3 for the Akashi Strait and Mokpogu, respectively. Also, when the observation days was 30, the maximum standard errors were found to be 13.1 and 13.6 for the Akashi Strait and Mokpogu, respectively. It could be reasonable to assume that the maximum standard error tends to be similar when the observation days is 14 or above.

    5.Conclusion

    In this study, a difference in the monthly, weekly and hourly maritime traffic was compared after applying it with the variation index, and the maximum standard error, varied by observation days, is as the following.

    The comparison of monthly variation indexes showed that the monthly variation indexes for September and February were 1.11 and 0.84, respectively, in turn revealing that the maritime traffic in September was about 32.1 % larger than February. Also, the daily variation indexes for Tuesday and Sunday were 1.05 and 0.92, respectively, in turn revealing that the maritime traffic in Tuesday was about 14.1 % larger than Sunday. Therefore, if the maritime traffic investigation is made in the month and week with low maritime traffic, each variation index should be applied to reflect the actual maritime traffic. Also, it is suggested that the maritime traffic investigation should be made on Tuesday, Wednesday and Thursday in either September or October when the maritime traffic is relatively large. When the maritime traffic investigation is executed for at least 1 week in consideration of the daily variation index, it is possible to reduce the maximum standard error rate to be within 21 %.

    Since this study suggest an error rate of the maritime traffic investigation by variation index and observation days, it is possible to detect the maritime traffic flow by month, week, and hour. Thus, it could be utilized as data for the maritime traffic congestion and flow evaluation, which is to evaluate whether a fairway could accommodate the volume of maritime traffic, as well as setting of speed limits and improvement of fairways.

    Figure

    KOSOMES-21-397_F1.gif

    Area of study.

    KOSOMES-21-397_F2.gif

    Procedure of study.

    KOSOMES-21-397_F3.gif

    Daily passing ship at Mokpogu.

    KOSOMES-21-397_F4.gif

    Monthly variation index.

    KOSOMES-21-397_F5.gif

    Weekly variation index.

    KOSOMES-21-397_F6.gif

    Hourly variation index.

    KOSOMES-21-397_F7.gif

    Relation between the observational days and Coefficient of variation.

    Table

    Statistics data of passing ship

    Monthly passing ship and variation index

    Weekly passing ship and variation index

    Hourly passing ship and variation index

    Maximum standard error by observation days (95 % confidence)

    Comparison of Maximum standard error between Akashi kaikyo and Mokpogu

    Reference

    1. Im NK , Kim CS , Yang HS , Lee KW (2007) A Study on Design of Emergency Anchorage at Adjacent Waters of Wan-do Port , Journal of the Korean Scociety of Marine Environment & Safety, Vol.14 (1) ; pp.65-69
    2. Kim CS , Rim GS , Kim SC (2011) A Study on the Improvement of the Daesan Harbor Fairway , Journal of Korean Navigation and Port Research, Vol.17 (2) ; pp.143-148
    3. Kim CW , Lee YS , Park YS , Yun GH , Kim DH (2006) A Study on the Traffic Stream and Navigational Characteristics at the Adcacent Sea Area of Busan Central Wharf , Journal of Korean Navigation and Port Research, Vol.30 (1) ; pp.9-15
    4. Kinzo I , Kiyoshi H (1974) Relations between the Number of Observational Days and the Accuracy on the Estimation of Average Annual Daily Traffic Volume , Japan Institute of Navigation, Vol.50 ; pp.1-8
    5. Lee YS , Jong JY , Kim CS (2012) A Study on the Designation of MIPO Emergency Anchorage , Journal of the Korean Scociety of Marine Environment & Safety, Vol.18 (4) ; pp.316-322
    6. Park SH , Jeong JS , Park YS (2006) A Study on Establishment of Traffic Separation Scheme for Adjacent Sea Area on Yeosu Port , Journal of the Korean Scociety of Marine Environment & Safety, Vol.12 (2) ; pp.133-137